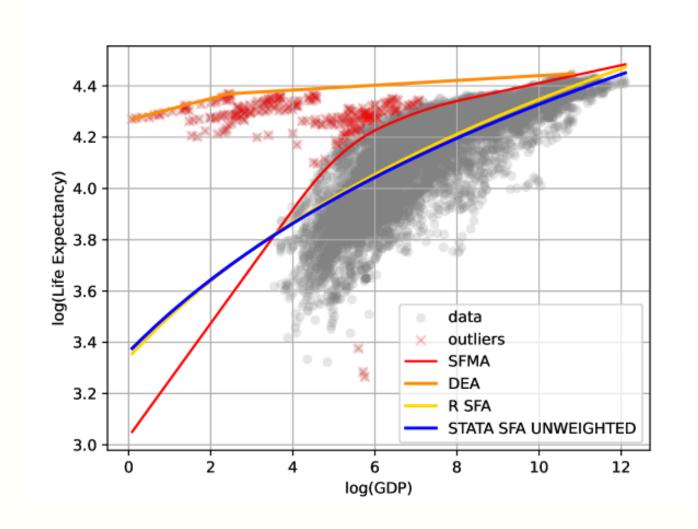
连享会·2025 暑期班·高级班

B6. 随机边界模型

- 异质性随机边界模型 sfcross, sfpanel
- 双边随机边界模型 sftt
- 稳健非参数随机前沿分析 sfma

连玉君 (中山大学) arlionn@163.com



lianxh.cn | Books 1/33

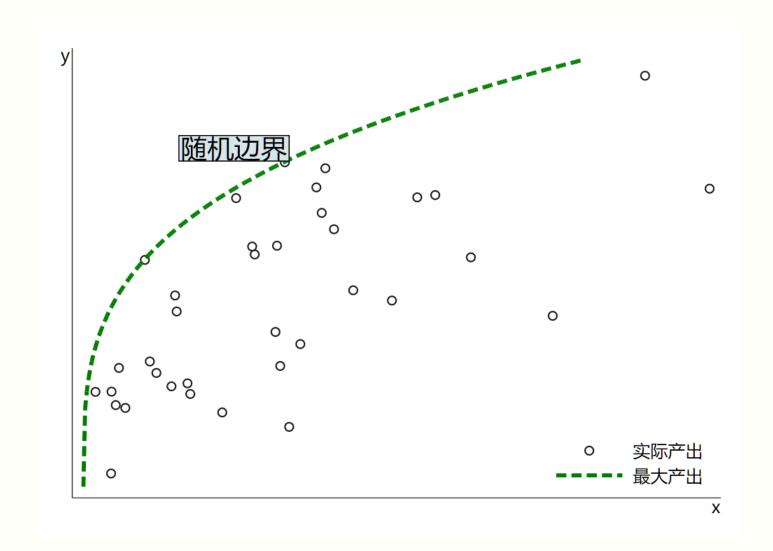
1. SFA 简介

1.1 SFA 的基本思想

理论上,任何经济个体的"实际产出" 不可能超过"产出边界",两者的偏离 可以视为 **无效率损失**。

统计上,该思想可建模为包含"复合干扰项"的回归模型:

- 一项为正态误差项 v_i ,用于捕捉测量误差与其他统计偏差;
- 一项为单边分布误差项 u_i ,反映无效率。



假设第i个厂商在理想状态下(无效率损失)的最大产出为 $f(z_i)$,则其实际产出 $q_i < f(z_i)$ 。定义其技术效率为:

$$TE_i = \frac{q_i}{f(z_i)} \le 1 \tag{18.1}$$

$$q_i = f(z_i, \beta) \cdot TE_i, \quad 0 < TE_i \le 1 \tag{18.2}$$

若 $TE_i=1$,表示完全效率;若 $TE_i<1$,存在效率损失。SFA 关注的是 TE_i 及其决定因素。

为区分随机误差和效率因素,在模型中引入随机项 v_i :

$$q_i = f(z_i, \beta) \cdot TE_i \cdot \exp(v_i) \tag{18.3}$$

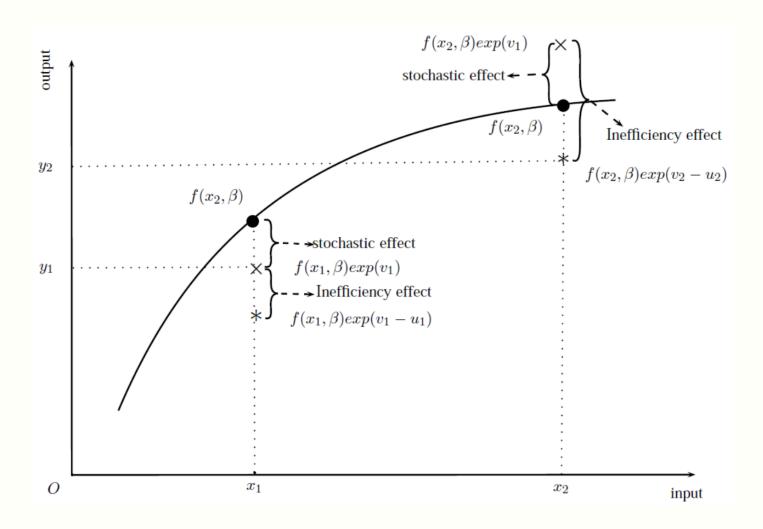
其中, $v_i \sim N(0,\sigma_v^2)$,通过对数变换,得:

$$ln q_i = ln f(z_i, \beta) + v_i - u_i \tag{18.5}$$

令 $u_i = -\ln(TE_i)$, $u_i \geq 0$, 称为"技术无效率项"。因此:

$$TE_i = \exp(-u_i) \tag{18.6}$$

多数情况下假设 $Cov(u_i, v_i) = 0$,即随机误差与无效率项独立。



Source: Porcelli, F. (2009) Measurement of Technical Efficiency. A Brief Survey on Parametric and Non-Parametric Techniques. University of Warwick 11 (527), 1-27, 2009. Figure 8. -PDF-.

lianxh.cn | Books 4/33

1.2 模型设定

若采用对数线性生产函数(如 Cobb-Douglas):

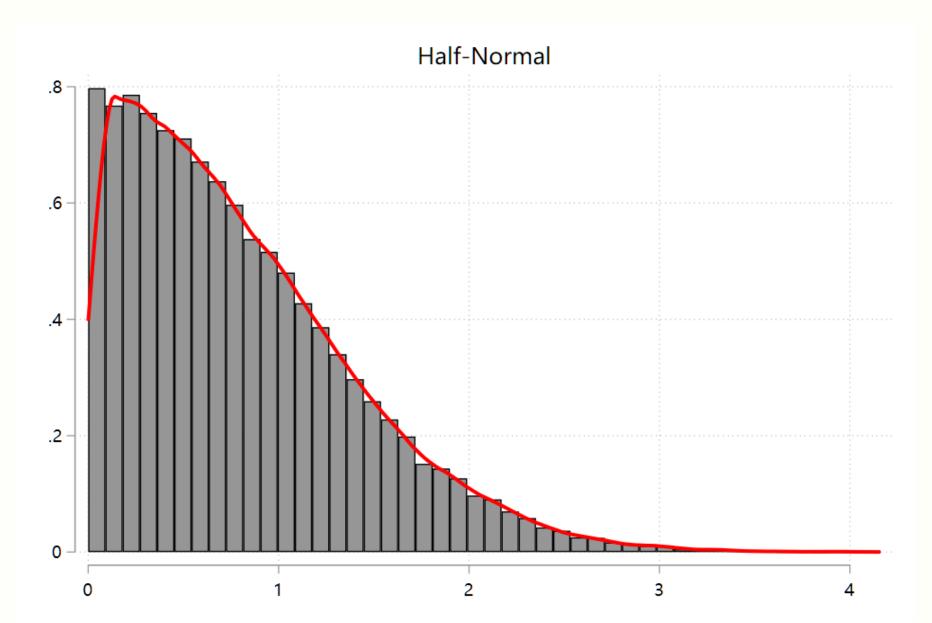
$$\ln q_i = \beta_0 + \sum_{j=1}^k \beta_j \ln z_{ji} + v_i - u_i$$
 (18.7)

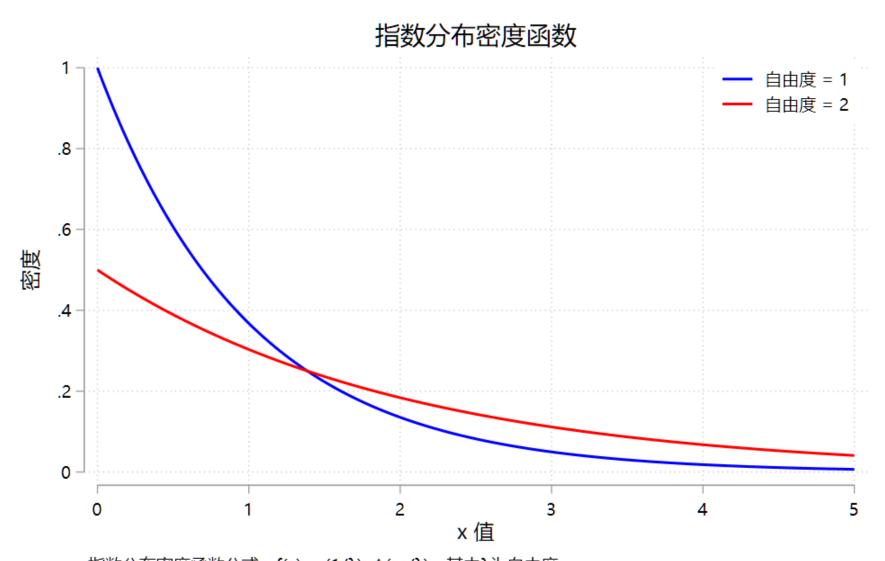
$$y_i = x_i'\beta + v_i - u_i = x_i'\beta + \varepsilon_i, \quad \varepsilon_i = v_i - u_i$$
 (18.8)

• $y_i = \ln q_i$, $x_{ji} = \ln z_{ji}$; ε_i 为复合误差项;假设 $\mathrm{Cov}(x_i, \varepsilon_i) = 0$,则 OLS 得到的 $\hat{\beta}$ 是一致的。

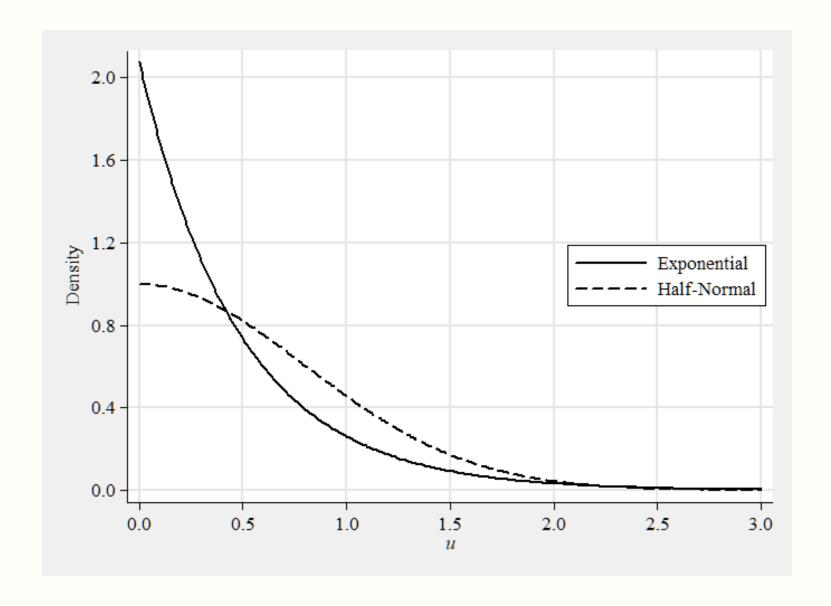
为估计 TE_i ,需对 v_i 和 u_i 的分布做进一步假设:

- $ullet v_i \sim N(0,\sigma_v^2)$;
- u_i 单边分布:
 - \circ 半正态分布 $u_i \sim |N(0,\sigma_u^2)|$;
 - \circ 截断正态 $u_i \sim N^+(\mu, \sigma_u^2)$;
 - \circ 指数分布 $u_i \sim \text{Exp}(\theta)$ 。





指数分布密度函数公式: $f(x) = (1/\lambda)e^{-(-x/\lambda)}$, 其中 λ 为自由度



lianxh.cn | Books

1.4 效率 / 非效率的估计

使用 SFA 模型的主要目的,在于研究"效率"或"非效率"。一般分两类用途:

- 对比不同公司或行业的效率水平;
- 探究影响效率的因素。

根据模型 (18.4),可以定义技术效率如下:

$$TE_i = \frac{y_i}{f(x_i, \beta) \cdot \exp(v_i)} = \exp(-u_i)$$
(18.24)

其中 $y_i^* = f(x_i, \beta) \cdot \exp(v_i)$ 表示第 i 个个体的"随机边界产出",效率即为实际产出与该边界的比值。

1.5 假设检验和模型筛选

$$y_i = x_i' \beta + v_i - u_i = x_i' \beta + \varepsilon_i, \quad \varepsilon_i = v_i - u_i$$
 (18.8)

 $ullet v_i \sim N(0,\sigma_v^2) \qquad u_i \sim N^+(\mu,\sigma_u^2);$

非效率项显著性检验

检验企业是否存在效率损失,本质是检验 u_i 是否显著。对应假设为:

- $H_0: \sigma_u^2 = 0$ (即无效率项不存在)
- $H_1: \sigma_u^2 > 0$

若不能拒绝 H_0 ,则 SFA 模型简化为 OLS 模型。

由于 σ_u^2 位于参数空间边界(不能小于零),传统 LR 检验不再适用,需使用一般化 LR 检验,其统计量服从**混合卡方** 分布,详见 Greene (2008)、Kumbhakar and Lovell (2000)。

嵌套模型之间的对比

若两个模型具有嵌套关系,则可使用 LR 检验。以正态-半正态模型 (hN) 和截断正态模型 (tN) 为例:

- hN 模型: $u_i \sim N^+(0,\sigma_u^2)$
- tN 模型: $u_i \sim N^+(\omega, \sigma_u^2)$

检验 $H_0: \omega = 0$ 。定义:

$$LR = 2(\ln L_1 - \ln L_0) \sim \chi^2(d_1 - d_0)$$
 (18.29)

其中 L_1 , L_0 分别为两个模型的对数似然值, d_1 , d_0 为参数个数。

1.5 生产函数的设定

- Cobb-Douglas 函数虽形式简单,但隐含严格假设:
 - 要素份额和需求弹性为常数;
 - 要素间替代弹性为 -1;
- 若需放松这些限制,可引入二次项,设定更灵活模型形式(Kumbhakar, 1989):

$$\ln y = \alpha + \sum_{k} \beta_k x_k + \frac{1}{2} \sum_{k} \sum_{m} \gamma_{km} x_k x_m \tag{18.30}$$

文献实例:

- Altunbas et al. (2000) 在 cost-SFA 模型中使用高阶项分析日本银行;
- Wang (2007) 在研究 R&D 效率时也采用该设定。

2. 异质性 SFA

SFA 模型的核心目的是分析企业效率及其决定因素。

- 在前文中我们主要假定非效率项 u_i 或 u_{it} 是同质的,即不同个体的非效率项服从相同分布。
- 但现实中,非效率项通常会受到公司特征、管理制度、行业属性等影响。

为此,文献提出可将非效率项的分布参数设定为异质性的函数,构成 **异质性 SFA 模型(Heteroscedastic SFA)**。

2.1 模型设定问题

最常见的方式是将非效率项的分布参数(如截断正态的均值 ω_i)设定为公司特征变量的函数。例如,在正态-截断型半正态模型中:

$$u_i \sim N^+(\omega_i, \sigma_u^2), \quad \omega_i = z_i' \gamma$$
 (18.20)

其中:

- z_i 为与无效率相关的解释变量,如公司规模、行业、产权性质等;
- γ 为待估系数;
- ω_i 决定非效率项分布的中心。

这样设定可将非效率建模为函数 $u_i = f(z_i; \gamma) + 扰 动 项$ 。

当 u_{it} 服从时变模型时,也可设:

$$u_{it} = z_{it}^{\prime} \gamma + \eta_{it}, \quad \eta_{it} \sim N^+(0,\sigma^2).$$

2.2 一步估计与两步估计

两步估计法(传统做法)

- 1. 第一步:估计基础 SFA 模型,得到效率估计值 $\hat{TE}_i = \exp(-\hat{u}_i)$;
- 2. 第二步:以 \hat{TE}_i 或 \hat{u}_i 为被解释变量,回归于公司特征变量 z_i ,分析影响因素。

该方法的缺点:

- \hat{u}_i 是估计值,带有误差,第二步 OLS 回归标准误不能正确估计;
- 此外, \hat{u}_i 的分布偏离正态,标准 t 检验不可靠。

一步估计法(推荐做法)

直接在极大似然估计中嵌入非效率项的异质性结构(例如设 $\omega_i=z_i'\gamma$),最大化如下对数似然函数:

$$\ln L = \sum_{i} \ln \left\{ rac{1}{\sigma} \phi \left(rac{arepsilon_{i}}{\sigma}
ight) \Phi \left(rac{\mu_{i}}{\sigma^{*}}
ight)
ight\}$$

- 其中 $\mu_i = z_i' \gamma$,其余参数如前所定义。
- Stata: frontier 命令 + het() 选项,或 sfcross 命令配合 hetmean() 和 hetsd() 选项。

小结

- 异质性 SFA 模型将非效率项的分布参数建模为公司特征的函数;
- 推荐使用一步估计法,避免传统两步法的误差传导问题;
- 通过模拟方法可以得到效率的边际效应估计;
- Stata 中 frontier, sfcross, sfpanel 命令都支持异质性设定。

lianxh.cn | Books 16/33

3. 双边随机边界模型

- 双边随机边界模型(Two-Tier SFA)是对传统 SFA 模型的扩展,主要用于研究工资议价等双边市场问题。
- 该模型由 Kumbhakar & Parmeter (2009) 提出,并将其应用于工资议价问题。
- Papadopoulos & Parmeter (2025) 的专著,从议价理论、信息不对称、遗漏变量 (如生产能力、管理能力等)、潜变量等角度提供设定双边随机边界模型的多种可能的理论框架。
- Lian, Liu and Parmeter et al. (2023) Papadopoulos & Parmeter (2025) 对传统的 TT-SFA 模型进行如下拓展:
 - 非效率项的分布不再局限于指数分布,允许半正态分布等更为灵活的设定,使我们可以更好地捕捉数据中的 异质性特征。
 - 支持面板数据:可以设定双向固定效应
 - 允许干扰项截面相关,这是审稿人经常质疑的一个问题。

lianxh.cn | Books 17/33

3.1 模型设定

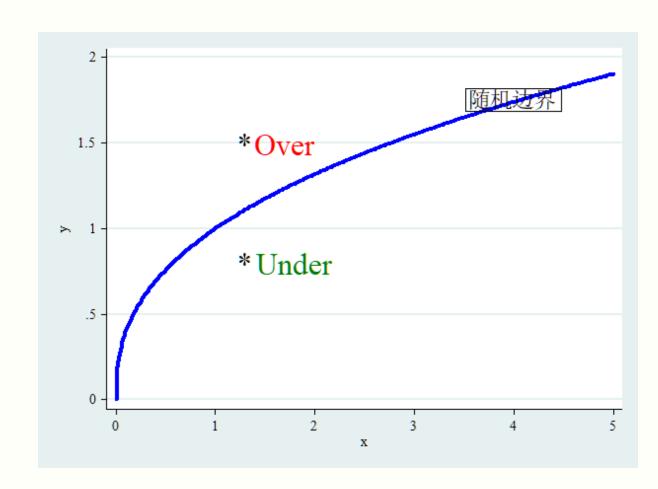
$$y_i = x_i eta + v_i + w_i - u_i$$

$$egin{aligned} v_i \sim i.\,i.\,d. & N(0,\sigma_v^2) \ w_i \sim i.\,i.\,d. & \mathrm{Exp}(\sigma_w,\sigma_w^2) \ u_i \sim i.\,i.\,d. & \mathrm{Exp}(\sigma_u,\sigma_u^2) \end{aligned}$$

该模型的复合干扰项有三部分组成:

- v_i 表示常规干扰项,假设其服从正态分布;
- w_i 和 u_i 都具有单边分布,此处假设它们服从指数分布。

在这种设定下,w 和 u 的期望值都是大于零的,即 $E(w_i) \geq 0$ 且 $E(u_i) \geq 0$ 。



3.2 理论基础: 以工资议价为例

- 在劳动力市场 (Kumbhakar & Parmeter, 2009, JPA)
 - \circ 工人的最低要求工资(保留工资): \underline{y}_i
 - \circ 雇主可支付的最高工资: \bar{y}_i
 - \circ 市场合理工资水平(均衡工资): y^*
- 三者之间满足: $\underline{y}_i \leq y^* \leq \bar{y}_i$
- 工人剩余: $\left(y_i^* \underline{y}_i\right)$ 厂商剩余: $(\bar{y}_i y_i^*)$
- 假定观测到的实际工资为 y_i ,工人的议价能力为 θ ,则

$$y_i = \underline{y}_i + heta \left(ar{y}_i - \underline{y}_i
ight)$$

• 其中 $heta\left(\bar{y}_i-\underline{y}_i\right)$ 表示工人可获得的总剩余。

工资表达式的进一步变形

$$y_{i}=y_{i}^{st}+ heta\left(ar{y}_{i}-y_{i}^{st}
ight)-\left(1- heta
ight)\left(y_{i}^{st}-ar{y}_{i}
ight)$$

议价能力与模型参数化

- 设工人剩余 $w_i = \theta(\bar{y}_i y_i^*) \geq 0$,无法直接观测
- 设厂商剩余 $u_i=(1-\theta)(y_i^*-\underline{y}_i)\geq 0$,无法直接观测
- 均衡价格 y^* 通常无法直接观测,可设定为厂商和工人特征变量的线性函数:

$$y^* = \mathbf{x}_i eta + v_i$$

- 其中 v_i 为干扰项, \mathbf{x}_i 可包含行业、教育、经验、年龄、婚否、种族、IQ 等
- w_i 和 u_i 也可以设定为厂商和工人特征的线性函数。
- 则上述工资表达式变为二元 SFA 结构:

$$y_i = \mathbf{x}_i \beta + v_i + w_i - u_i$$

3.3 效率衡量及含义 (Lian et al., 2023, SJ)

厂商议价能力: $1 - e^{-u}$

$$rac{ ext{Maximum price - Actual price}}{ ext{Maximum price}} = rac{ar{y}_i - y_i^*}{ar{y}_i} = 1 - e^{-u}$$

工人议价能力: $1 - e^{-w}$

$$rac{ ext{Actual price} - ext{Minimum price}}{ ext{Actual price}} = rac{y_i^* - \underline{y}_i}{y_i^*} = 1 - e^{-w}$$

4. SFMA 模型: 稳健非参数随机前沿分析

lianxh.cn | Books 22/33

4.1 SFMA 简介

随机前沿元分析(SFMA) 是一种半参数前沿估计方法,旨在解决传统方法的核心局限:

- 突破预设函数形式限制(如 SFA 的参数假设)
- 处理输入数据的报告误差(支持异质性方差)
- 增强对异常值的鲁棒性(内置修剪策略)

核心创新:

- 采用 B 样条与形状约束建模前沿函数
- 整合元分析思想处理数据不确定性
- 基于似然的修剪策略自动剔除异常值

软件实现: 开源 Python 包 sfma ,Github:https://github.com/ihmeuw-msca/sfma

lianxh.cn | Books 23/33

4.2 模型设定

基本模型表达式:

$$y_i = \langle x_i, \beta \rangle + u_i - v_i + \epsilon_i$$
 $u_i \sim N(0, \gamma)$ (随机效应,非抽样误差) $v_i \sim HN(0, \eta)$ (无效率项,单边分布) $\epsilon_i \sim N(0, \sigma_i^2)$ (抽样误差,已知方差)

参数含义:

y_i: 产出变量

• $\langle x_i, \beta \rangle$: 基于协变量的生产前沿(样条基函数构建)

• u_i : 随机效应项(非抽样误差)

• v_i : 技术无效率项 ($v_i \geq 0$)

• ϵ_i : 抽样误差(可含已知异质性方差)

4.3 数据生成过程 (Next Page)

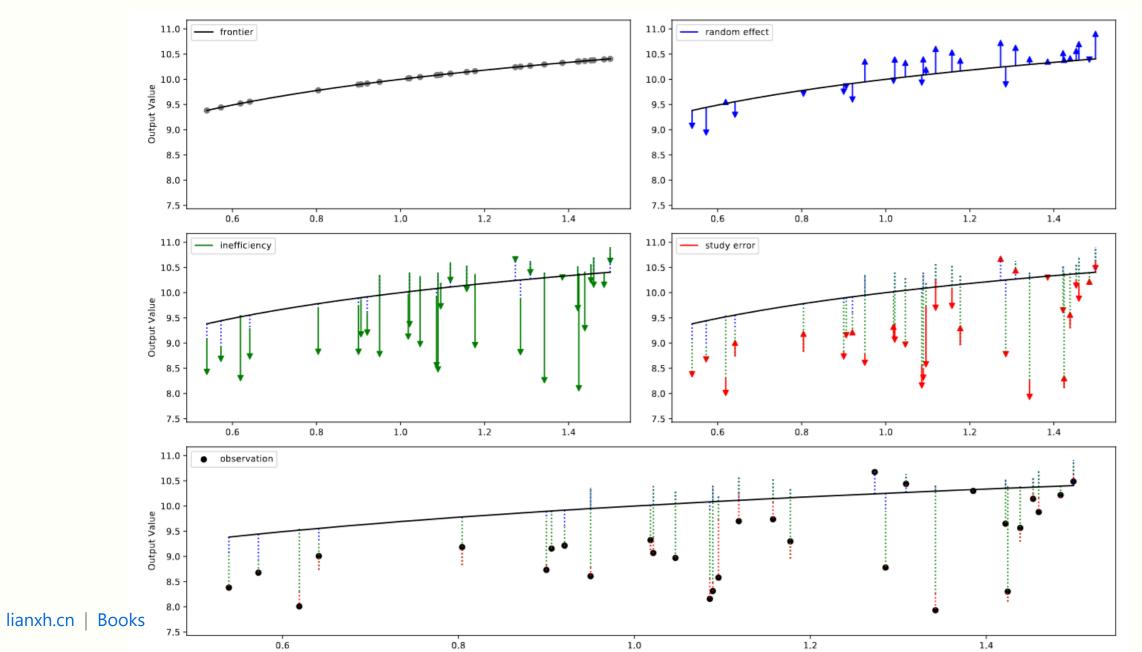


图 1 展示了如何生成随机前沿元分析数据。其中观测数据点以黑色显示于底部。数据生成过程中的参数设定如下:

- 前沿函数设定为 $f(x) = \log(x) + 10$;
- 协变量 x_i 在 0.5 至 1.5 间均匀抽取;
- 随机效应 $u_i \sim N(0, \gamma = 0.25)$;
- 技术无效率项 $v_i \sim HN(0, \eta = 1)$;
- 抽样误差 $\epsilon_i \sim N(0, \sigma_i^2)$,其中 σ_i^2 在 0 至 0.75 间均匀抽取。

图 1 的具体制作过程如下:

1. 左上角:

- 生成 x_i 的值,范围在 0.5 至 1.5 之间;
- \circ 计算前沿函数 $f(x_i) = \log(x_i) + 10$;
- \circ 绘制散点图 $f(x_i) \sim x_i$ 。

2. 右上角:

- \circ 生成随机效应 u_i ;
- \circ 生成实际产出 y_i ,计算公式为 $y_i = f(x_i) + u_i$ 。
- \circ 绘制散点图 $y_i \sim x_i$ 。

3. 后续图形:

- \circ 依次生成技术无效率项 v_i (左中)、抽样误差 ϵ_i (右中);
- \circ 计算最终观测值 $y_i = f(x_i) + u_i v_i + \epsilon_i$;
- 绘制最终观测数据点。

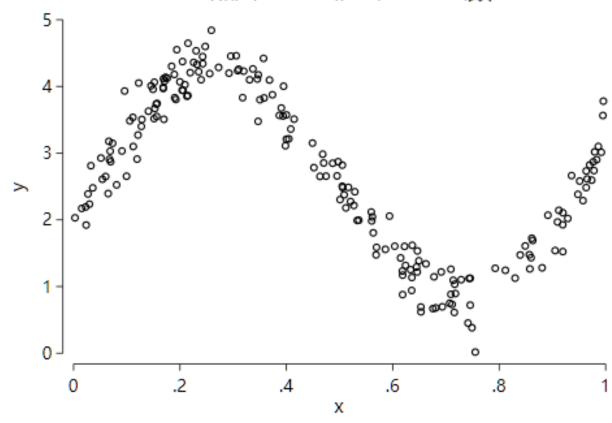
4.4 样条基函数的基本思想

本例设计一个高度非线性的生产前沿函数:

$$y = 2 + 1.5x - 0.8x^2 + 0.5x^3 + 2\sin(2\pi x) + \epsilon$$

• 其中 $\epsilon \sim N(0,0.25^2)$, $x \in [0,1]$

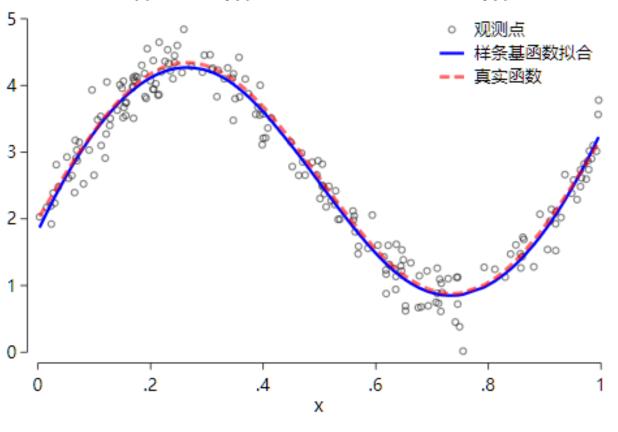
散点图: 高度非线性前沿函数



lianxh.cn | Books 28/33

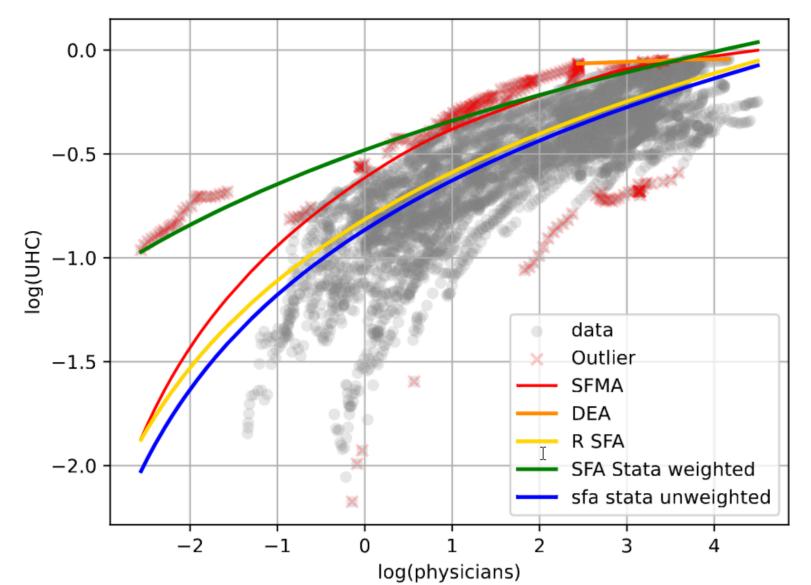
```
* 6. 手动构造样条基函数
gen x2 = x^2
gen x3 = x^3
gen s1 = (x > 0.33) * (x - 0.33)^3
gen s2 = (x > 0.66) * (x - 0.66)^3
* 7. 拟合 OLS
reg y x x2 x3 s1 s2
* 8. 预测拟合值
predict y hat
* 9. 三线合一作图
#delimit ;
twoway
  (scatter y x, msym(Oh) mc(black%50))
  (line y_hat x, sort lc(blue)
       lw(*2.0) lp(solid))
  (line y_true x, sort
       lc(red\%60) lw(*2.5) lp(dash)),
 legend(order(1 "观测点"
              2 "样条基函数拟合"
              3 "真实函数")
        ring(0) position(1))
 xsize(4) ysize(3);
#delimit cr
```

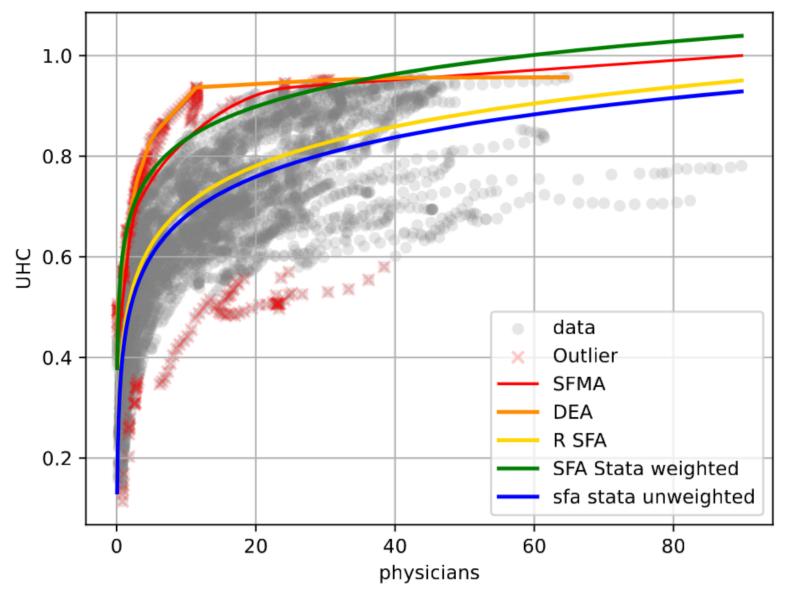
样条基函数拟合高度非线性前沿函数



lianxh.cn | Books 29/33

4.5 SFMA 与传统方法的对比





lianxh.cn | Books

4.6 Python 实现

参见

- 作者: Github
- 课件:【B6_SFA/sfma/notebooks】 文件夹
 - O Data Simulations-Fig1-5.ipynb
 - GDP and LE-Fig6-7.ipynb
 - UHC-Current-Fig8-9.ipynb

lianxh.cn | Books 32/33

Thanks

lianxh.cn